Back to Search
Start Over
Pigment epithelium-derived factor (PEDF) protects motor neurons from chronic glutamate-mediated neurodegeneration.
- Source :
-
Journal of neuropathology and experimental neurology [J Neuropathol Exp Neurol] 1999 Jul; Vol. 58 (7), pp. 719-28. - Publication Year :
- 1999
-
Abstract
- Although pigment epithelium-derived factor (PEDF) is a neurotrophic factor that may aid the development, differentiation, and survival of adjacent neural retinae, the wider distribution of PEDF mRNA in the central nervous system suggested to us that this factor could have pleiotropic neurotrophic and neuroprotective effects on nonretinal neurons. We examined the distribution of PEDF mRNA and its transcript in the spinal cord. By immunohistochemistry and western blot analysis using an antihuman PEDF antiserum of known specificity, we found that PEDF protein is present in spinal cord, cerebrospinal fluid, and skeletal muscle and that its mRNA appears concentrated in motor neurons of the human spinal cord. These observations indicate that PEDF could have potential autocrine and paracrine effects on motor neurons, as well as being target-derived. We analyzed the pharmacologic utility of PEDF in a postnatal organotypic culture model of motor neuron degeneration and proved it is highly neuroprotective. The effect was biologically important, significantly sparing the spinal cord's gross organotypic morphological appearance and preserving motor neuron choline acetyltransferase (ChAT). PEDF alone did not increase ChAT, indicating that the observed effect is neuroprotective, not merely an upregulation of motor neuron ChAT. Further, PEDF preserved motor neuron number, proving a survival effect. We hypothesize that PEDF may play important roles in the survival and maintenance of spinal motor neurons in their neuroprotection against acquired insults in postnatal life. It should be developed further as a therapeutic strategy for motor neuron diseases such as amyotrophic lateral sclerosis (ALS).
- Subjects :
- Animals
Cattle
Cell Survival physiology
Cerebrospinal Fluid metabolism
Choline O-Acetyltransferase metabolism
Chronic Disease
Ependyma metabolism
Female
Haplorhini
Humans
Motor Neurons metabolism
Motor Neurons pathology
Muscle, Skeletal metabolism
Organ Culture Techniques
Proteins genetics
Proteins metabolism
RNA, Messenger metabolism
Rats
Serpins genetics
Serpins metabolism
Spinal Cord cytology
Spinal Cord metabolism
Eye Proteins
Glutamic Acid poisoning
Motor Neurons drug effects
Nerve Degeneration chemically induced
Nerve Degeneration pathology
Nerve Growth Factors
Neuroprotective Agents pharmacology
Proteins pharmacology
Serpins pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 0022-3069
- Volume :
- 58
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Journal of neuropathology and experimental neurology
- Publication Type :
- Academic Journal
- Accession number :
- 10411342
- Full Text :
- https://doi.org/10.1097/00005072-199907000-00006