Back to Search Start Over

RNA-protein interactions in the human RNase MRP ribonucleoprotein complex.

Authors :
Pluk H
van Eenennaam H
Rutjes SA
Pruijn GJ
van Venrooij WJ
Source :
RNA (New York, N.Y.) [RNA] 1999 Apr; Vol. 5 (4), pp. 512-24.
Publication Year :
1999

Abstract

The eukaryotic nucleolus contains a large number of small RNA molecules that, in the form of small nucleolar ribonucleoprotein complexes (snoRNPs), are involved in the processing and modification of pre-rRNA. One of the snoRNPs that has been shown to possess enzymatic activity is the RNase MRP. RNase MRP is an endoribonuclease involved in the formation of the 5' end of 5.8S rRNA. In this study the association of the hPop1 protein with the RNase MRP complex was investigated. The hPop1 protein seems not to be directly bound to the RNA component, but requires nt 1-86 and 116-176 of the MRP RNA to associate with the RNase MRP complex via protein-protein interactions. UV crosslinking followed by ribonuclease treatment and immunoprecipitation with anti-Th/To antibodies revealed three human proteins of about 20, 25, and 40 kDa that can associate with the RNase MRP complex. The 20- and 25-kDa proteins appear to bind to stem-loop I of the MRP RNA whereas the 40-kDa protein requires the central part of the MRP RNA (nt 86-176) for association with the RNase MRP complex. In addition, we show that the human RNase P proteins Rpp30 and Rpp38 are also associated with the RNase MRP complex. Expression of Vesicular Stomatitis Virus- (VSV) tagged versions of these proteins in HeLa cells followed by anti-VSV immunoprecipitation resulted in coprecipitation of both RNase P and RNase MRP complexes. Furthermore, UV crosslinking followed by anti-Th/To and anti-Rpp38 immunoprecipitation revealed that the 40-kDa protein we detected in UV crosslinking is probably identical to Rpp38.

Details

Language :
English
ISSN :
1355-8382
Volume :
5
Issue :
4
Database :
MEDLINE
Journal :
RNA (New York, N.Y.)
Publication Type :
Academic Journal
Accession number :
10199568
Full Text :
https://doi.org/10.1017/s1355838299982079