Back to Search
Start Over
Functional role of the slow activation property of ERG K+ channels.
- Source :
-
The European journal of neuroscience [Eur J Neurosci] 1999 Mar; Vol. 11 (3), pp. 753-60. - Publication Year :
- 1999
-
Abstract
- ERG (ether-à-go-go-related gene) K+ channels are crucial in human heart physiology (h-ERG), but are also found in neuronal cells and are impaired in Drosophila 'seizure' mutants. Their biophysical properties include the relatively fast kinetics of the inactivation gate and much slower kinetics of the activation gate. In order to elucidate how the complex time- and voltage-dependent activation properties of ERG channels underlies distinct roles in excitability, we investigated different types of ERG channels intrinsically present in cells or heterologously expressed in mammalian cells or Xenopus oocytes. Voltage-dependent activation curves were highly dependent on the features of the eliciting protocols. Only very long preconditioning times produced true steady-state relationships, a fact that has been largely neglected in the past, hampering the comparison of published data on ERG channels. Beyond this technical aspect, the slow activation property of ERG can be responsible for unsuspected physiological roles. We found that around the midpoint of the activation curve, the time constant of ERG open-close kinetics is of the order of 10-15 s. During sustained trains of depolarizations, e.g. those produced in neuronal firing, this leads to the use-dependent accumulation of open-state ERG channels. Accumulation is not observed in a mutant with a fast activation gate. In conclusion, it is well established that other K+ channels (i.e. Ca2+-activated and M) control the spike-frequency adaptation, but our results support the notion that the purely voltage-dependent activation property of ERG channels would allow a slow inhibitory physiological role in rapid neuronal signalling.
- Subjects :
- Animals
ERG1 Potassium Channel
Electric Stimulation
Electrophysiology
Ether-A-Go-Go Potassium Channels
Ganglia, Spinal cytology
Humans
Kidney cytology
Leukemia
Membrane Potentials physiology
Mice
Mutagenesis physiology
Neuroblastoma
Oocytes physiology
Rats
Transcriptional Regulator ERG
Tumor Cells, Cultured chemistry
Tumor Cells, Cultured physiology
Xenopus
Cation Transport Proteins
DNA-Binding Proteins
Ion Channel Gating physiology
Potassium Channels genetics
Potassium Channels metabolism
Potassium Channels, Voltage-Gated
Trans-Activators
Subjects
Details
- Language :
- English
- ISSN :
- 0953-816X
- Volume :
- 11
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- The European journal of neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 10103069
- Full Text :
- https://doi.org/10.1046/j.1460-9568.1999.00493.x