Back to Search
Start Over
Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor.
- Source :
-
Journal of biomaterials science. Polymer edition [J Biomater Sci Polym Ed] 1999; Vol. 10 (1), pp. 79-94. - Publication Year :
- 1999
-
Abstract
- Biodegradable microspheres were prepared through glutaraldehyde cross-linking of gelatin without using any surfactants as a carrier matrix of basic fibroblast growth factor (bFGF). In the in vitro system, bFGF was sorbed to microspheres of acidic gelatin with an isoelectric point (IEP) of 5.0, but not to those of basic gelatin with an IEP of 9.0. The rate of bFGF sorption to the acidic gelatin microsphere in phosphate-buffered saline solution (pH 7.4) was smaller than that in water. Following incorporation of bFGF into the microspheres at 4 degrees C for 12 h, bFGF release from the bFGF-incorporating microspheres was studied. Approximately 30% of incorporated bFGF was released from the acidic gelatin microsphere within the initial 3 h, followed by no substantial release, whereas the basic gelatin microsphere released almost completely the incorporated bFGF within 1 day. It is likely that when basic bFGF molecules were immobilized to the acidic gelatin constituting microspheres through polyion complexation, they were not readily released under the in vitro nondegradation condition of gelatin. Incorporation of anionic carboxylmethyl cellulose (CMC) into the acidic gelatin microspheres reduced the amount of bFGF desorbed initially. This indicates that the initial burst is ascribed to free bFGF which is not ionically interacted with the acidic gelatin. CMC will function as a bFGF sorbent to suppress the initial leakage from the microspheres. When injected subcutaneously into the mouse back, bFGF-incorporating acidic gelatin microspheres were degraded over time and induced neovascularization around the injection site, in marked contrast to bFGF in the solution form. CMC incorporation slowed down the biodegradation and vascularization effect of bFGF-incorporating gelatin microspheres. It was concluded that the gelatin microsphere was a promising carrier matrix of bFGF to enhance the vascularization effect.
- Subjects :
- Animals
Carboxymethylcellulose Sodium chemistry
Chromatography, High Pressure Liquid
Excipients chemistry
Excipients pharmacology
Fibroblast Growth Factor 2 administration & dosage
Gelatin chemistry
Gelatin pharmacology
Hemoglobins analysis
Hydrogels
Injections, Subcutaneous
Isoelectric Point
Mice
Microspheres
Recombinant Proteins administration & dosage
Recombinant Proteins pharmacology
Skin blood supply
Delayed-Action Preparations
Drug Delivery Systems methods
Fibroblast Growth Factor 2 pharmacology
Neovascularization, Physiologic drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 0920-5063
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of biomaterials science. Polymer edition
- Publication Type :
- Academic Journal
- Accession number :
- 10091924
- Full Text :
- https://doi.org/10.1163/156856299x00298