Back to Search
Start Over
Correlation of Heme Binding Affinity and Enzyme Kinetics of Dehaloperoxidase.
- Source :
-
Biochemistry . 11/11/2014, Vol. 53 Issue 44, p6863-6877. 15p. - Publication Year :
- 2014
-
Abstract
- Chemical and thermal denaturation of dehaloperoxidase- hemoglobin (DHP) was investigated to test the relative stability of isoforms DHP A and DHP B and the H55V mutant of DHP A with respect to heme loss. In thermal denaturation experiments, heme loss was observed at temperatures of 54, 46, and 61 °C in DHP A, DHP B, and H55V, respectively. Guanidinium hydrochloride (GdnHCl)- and ureainduced denaturation was observed at respective concentrations of 1.15 ± 0.01 M DHP A and 1.09 ± 0.02 M DHP B, and 5.19 ± 0.05 M DHP A and 4.12 ± 0.14 M DHP B, respectively. The binding affinity of heme appears to be significantly smaller in both isoforms of DHP than in myoglobins. This observation was corroborated by heme transfer experiments, in which heme was observed to transfer for DHP A and B to horse skeletal muscle myoglobin (HSMb). GdnHCl-induced denaturation suggests a threshold of 1 mM for stabilization by binding of the inhibitor 4-bromophenol (4-BP). Concentrations of 4-BP greater than 1 mM caused destabilization. Urea-induced denaturation showed only destabilizing effects from phenolic ligand binding. Heme transfer experiments from DHP to HSMb further support the hypothesis that the binding of halophenols to DHP facilitates the removal of the heme. Thermal denaturation assessed via UV-visible spectroscopy and that assessed by differential scanning calorimetry (DSC) are both in agreement with chemical denaturation experiments and show that the denaturing abilities of the halophenols improve with the size of the para halogen atom in 4-XP, where X = iodo, bromo, chloro, or fluoro (4-IP > 4-BP > 4-CP > 4-FP), and the number of halo substituents as in 2,4,6-tribromophenol (2,4,6-TBP > 4- BP). DHP B, which differs in five amino acids, is less stable than DHP A with ∆Hcal and Tm values of 165.1 kJ/mol and 47.5 °C compared to values of 183.3 kJ/mol and 50.4 °C for DHP B and DHP A, respectively. Kinetic studies verified that DHP B has a catalytic efficiency (kcat/Km) ∼ 5-6 times greater than that of DHP A but showed an increased level of substrate inhibition in DHP B for both 2,4,6-TCP and 2,4,6-TBP. An inverse correlation between protein stability with respect to heme loss and catalytic efficiency is suggested on the basis of the fact that the heme in DHP B has a stability lower than that of DHP A but a catalytic efficiency higher than that of DHP A. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00062960
- Volume :
- 53
- Issue :
- 44
- Database :
- Academic Search Index
- Journal :
- Biochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 99618192
- Full Text :
- https://doi.org/10.1021/bi5005975