Back to Search
Start Over
Quasipolar Subrings of 3 x 3 Matrix Rings.
- Source :
-
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica . Nov2013, Vol. 21 Issue 3, p133-146. 14p. - Publication Year :
- 2013
-
Abstract
- An element a of a ring R is called quasipolar provided that there exists an idempotent p ∈ R such that p ∈ comm2(a), a + p ∈ U (R) and ap ∈ Bqnil. A ring R is quasipolar in case every element in R is quasipolar. In this paper, we determine conditions under which subrings of 3 x 3 matrix rings over local rings are quasipolar. Namely, if R. is a bleached local ring, then we prove that T3 (R) is quasipolar if and only if R is uniquely bleached. Furthermore, it is shown that Tn(R) is quasipolar if and only if Tn(R[[x]]) is quasipolar for any positive integer [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 12241784
- Volume :
- 21
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
- Publication Type :
- Academic Journal
- Accession number :
- 99520674
- Full Text :
- https://doi.org/10.2478/auom-2013-0048