Back to Search Start Over

Quasipolar Subrings of 3 x 3 Matrix Rings.

Authors :
Gurgun, Orhan
Halicioglu, Sait
Harmanci, Abdullah
Source :
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica. Nov2013, Vol. 21 Issue 3, p133-146. 14p.
Publication Year :
2013

Abstract

An element a of a ring R is called quasipolar provided that there exists an idempotent p ∈ R such that p ∈ comm2(a), a + p ∈ U (R) and ap ∈ Bqnil. A ring R is quasipolar in case every element in R is quasipolar. In this paper, we determine conditions under which subrings of 3 x 3 matrix rings over local rings are quasipolar. Namely, if R. is a bleached local ring, then we prove that T3 (R) is quasipolar if and only if R is uniquely bleached. Furthermore, it is shown that Tn(R) is quasipolar if and only if Tn(R[[x]]) is quasipolar for any positive integer [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
12241784
Volume :
21
Issue :
3
Database :
Academic Search Index
Journal :
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Publication Type :
Academic Journal
Accession number :
99520674
Full Text :
https://doi.org/10.2478/auom-2013-0048