Back to Search Start Over

Learning to classify short text from scientific documents using topic models with various types of knowledge.

Authors :
Vo, Duc-Thuan
Ock, Cheol-Young
Source :
Expert Systems with Applications. Feb2015, Vol. 42 Issue 3, p1684-1698. 15p.
Publication Year :
2015

Abstract

Classification of short text is challenging due to data sparseness, which is a typical characteristic of short text. In this paper, we propose methods for enhancing features using topic models, which make short text seem less sparse and more topic-oriented for classification. We exploited topic model analysis based on Latent Dirichlet Allocation for enriched datasets, and then we presented new methods for enhancing features by combining external texts from topic models that make documents more effective for classification. In experiments, we utilized the title contents of scientific articles as short text documents, and then enriched these documents using topic models from various types of universal datasets for classification in order to show that our approach performs efficiently. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09574174
Volume :
42
Issue :
3
Database :
Academic Search Index
Journal :
Expert Systems with Applications
Publication Type :
Academic Journal
Accession number :
99333460
Full Text :
https://doi.org/10.1016/j.eswa.2014.09.031