Back to Search Start Over

Core-to-valence spectroscopic detection of the CH2Br radical and element-specific femtosecond photodissociation dynamics of CH2IBr.

Authors :
Attar, Andrew R.
Piticco, Lorena
Leone, Stephen R.
Source :
Journal of Chemical Physics. 10/28/2014, Vol. 141 Issue 16, p1-10. 10p. 1 Diagram, 1 Chart, 6 Graphs.
Publication Year :
2014

Abstract

Element-specific single photon photodissociation dynamics of CH2IBr and core-to-valence absorption spectroscopy of CH2Br radicals are investigated using femtosecond high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy. Photodissociation of CH2IBr along both the C-I or C-Br reaction coordinates is observed in real-time following excitation at 266 nm. At this wavelength, C-I dissociation is the dominant reaction channel and C-Br dissociation is observed as a minor pathway. Both photodissociation pathways are probed simultaneously through individual 4d(I) N4/5 and 3d(Br) M4/5 core-to-valence transitions. The 3d(Br) M4/5 pre-edge absorption spectrum of the CH2Br radical photoproduct corresponding to the C-I dissociation channel is characterized for the first time. Although the radical's singly occupied molecular orbital (SOMO) is mostly localized on the central carbon atom, the 3d(Br) → π*(SOMO) resonances at 68.5 eV and 69.5 eV are detected 2 eV below the parent molecule 3d(Br) → σ*(LUMO) transitions. Core-to-valence XUV absorption spectroscopy provides a unique probe of the local electronic structure of the radical species in reference to the Br reporter atom. The measured times for C-I dissociation leading to I and I* atomic products are 48 ± 12 fs and 44 ± 4 fs, respectively, while the measured C-Br dissociation time leading to atomic Br is 114 ± 17 fs. The investigation performed here demonstrates the capability of femtosecond time-resolved core-level spectroscopy utilizing multiple reporter atoms simultaneously. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
141
Issue :
16
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
99235375
Full Text :
https://doi.org/10.1063/1.4898375