Back to Search Start Over

Formation Mechanism of Photo-Induced Nested Wrinkles on Siloxane-Photomonomer Hybrid Film.

Authors :
Suzuki, Kazumasa
Tokudome, Yasuaki
Takahashi, Masahide
Source :
AIP Conference Proceedings. 2014, Vol. 1624, p141-146. 6p. 1 Diagram, 2 Graphs.
Publication Year :
2014

Abstract

Nested wrinkle structures, hierarchical surface wrinkles of different periodicities of sub-|im and tens-|im, have been fabricated on a siloxane-photomonomer hybrid film via a photo-induced surface polymerization of acrylamide. The formation mechanism of the nested wrinkle structures is examined based on a time-dependent structure observation and chemical composition analyses. In-situ observation of the evolving surface structure showed that sub-|im scale wrinkles first formed, subsequently the tens-|im scale ones did. In-situ FT-IR analysis indicated that the nested wrinkles formation took place along with the development of siloxane network of under layer. A cross sectional observation of the film revealed that the film was composed of three layers. FT-IR spectra of the film revealed that the surface and interior layers were polyacrylamide rich layer and siloxane-polymer rich layer, respectively. The intermediate layer formed as a diffusion layer by migration of acrylamide from interior to the surface. These three layers have different chemical compositions and therefore different mechanical characteristics, which allows the wrinkle formation. Shrinkage of siloxane-polymer interior layers, as a result of polycondensation of siloxane network, induced mechanical instabilities at interlayers, to form the nested wrinkle structures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0094243X
Volume :
1624
Database :
Academic Search Index
Journal :
AIP Conference Proceedings
Publication Type :
Conference
Accession number :
99048329
Full Text :
https://doi.org/10.1063/1.4900470