Back to Search
Start Over
Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair.
- Source :
-
Biochemical & Biophysical Research Communications . Oct2014, Vol. 452 Issue 4, p1034-1039. 6p. - Publication Year :
- 2014
-
Abstract
- The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair. [ABSTRACT FROM AUTHOR]
- Subjects :
- *DNA repair
*DIMERS
*MONOMERS
*CELL physiology
*THREONINE
*PROTEIN kinases
*DNA damage
Subjects
Details
- Language :
- English
- ISSN :
- 0006291X
- Volume :
- 452
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- Biochemical & Biophysical Research Communications
- Publication Type :
- Academic Journal
- Accession number :
- 98664879
- Full Text :
- https://doi.org/10.1016/j.bbrc.2014.09.038