Back to Search Start Over

On-chip generation of high-order single-photon W-states.

Authors :
Gräfe, Markus
Heilmann, René
Perez-Leija, Armando
Keil, Robert
Dreisow, Felix
Heinrich, Matthias
Moya-Cessa, Hector
Nolte, Stefan
Christodoulides, Demetrios N.
Szameit, Alexander
Source :
Nature Photonics. Oct2014, Vol. 8 Issue 10, p791-795. 5p. 3 Diagrams.
Publication Year :
2014

Abstract

Quantum superposition is the quantum-mechanical property of a particle whereby it inhabits several of its possible quantum states simultaneously. Ideally, this permissible coexistence of quantum states, as defined on any degree of freedom, whether spin, frequency or spatial, can be used to fully exploit the information capacity of the associated physical system. In quantum optics, single photons are the quanta of light, and their coherence properties allow them to establish entangled superpositions between a large number of channels, making them favourable for realizations of quantum information processing schemes. In particular, single-photon W-states (that is, states exhibiting a uniform distribution of the photons across multiple modes) represent a class of multipartite maximally-entangled quantum states that are highly robust to dissipation. Here, we report on the generation and verification of single-photon W-states involving up to 16 spatial modes, and exploit their underlying multi-mode superposition for the on-chip generation of genuine random numbers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17494885
Volume :
8
Issue :
10
Database :
Academic Search Index
Journal :
Nature Photonics
Publication Type :
Academic Journal
Accession number :
98623010
Full Text :
https://doi.org/10.1038/nphoton.2014.204