Back to Search Start Over

Lithium Attenuates Cannabinoid-Induced Dependence in the Animal Model: Involvement of Phosphorylated ERK1/2 and GSK-3β Signaling Pathways.

Authors :
Rahimi, Hamid Reza
Dehpour, Ahmad Reza
Mehr, Shahram Ejtemaei
Sharifzadeh, Mohammad
Ghahremani, Mohammad Hossein
Razmi, Ali
Ostad, Seyed Nasser
Source :
Acta Medica Iranica. 2014, Vol. 52 Issue 9, p656-663. 8p.
Publication Year :
2014

Abstract

Cannabis is one of the most banned drugs in the world. Cannabinoid-induced dependence or withdrawal signs are indicated by the result of complex molecular mechanisms including upstream protein kinases (PKs), such as an extracellular signal regulated kinase1/2 (ERK1/2) and downstream glycogen synthase kinase-3β (GSK-3β), which lead to neuronal plasticity. In this study, we examined the protective effect of lithium (Li) as a potent ERK1/2 and GSK-3β modulator to prevent the development of dependence on cannabinoids. For this purpose, rats were treated twice daily with increasing doses of WIN 55,212-2 (WIN, 2-8 mg/kg, intraperitoneally (i.p.), for five consecutive days. AM251 (AM, 2 mg/kg), a cannabinoid antagonist, was injected i.p to induce manifestations of abstinence in rat dependency on WIN, and the subsequent withdrawal signs were recorded. To evaluate the preventive effect of Li, the rats were pre-treated with Li (10 mg/kg, i.p.) twice daily, 30 minutes before every injection of WIN. SL327, as an ERK1/2 inhibitor, was also injected (SL, 50 mg/kg, i.p.) 30 minutes before the last doses of WIN in separate groups. The p-ERK1/2, total ERK1/2, p-GSK-3β and total GSK-3β expressions were determined with Western blot method after 60 minutes, prior to the Li, WIN or AM injections. Li and SL pre-treatment attenuated the global withdrawal signs in regarding their modulation effect on the up-regulation of p-ERK1/2 cascade enhanced by AM injection. Furthermore, the p-GSK-3β expression was up-regulated with SL and Li pre- treatment against AM injection, without alteration on the total contents of ERK1/2 and GSK-3β level. Therefore, p-ERK1/2 and p-GSK-3β pathways are involved in the cannabinoid-induced dependence. However, no crosstalk was indicated between these two pathways. In conclusion, Li neuroprotectionwith regard to cannabinoid abstinence may occur through the regulation of the p-ERK1/2 cascade inconsequent of p-GSK-3β signaling pathways in rats. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00446025
Volume :
52
Issue :
9
Database :
Academic Search Index
Journal :
Acta Medica Iranica
Publication Type :
Academic Journal
Accession number :
98614580