Back to Search Start Over

Mechanistic–empirical analysis of the results of finite element analysis on flexible pavement with geogrid base reinforcement.

Authors :
Abu-Farsakh, Murad Y.
Gu, Jie
Voyiadjis, George Z.
Chen, Qiming
Source :
International Journal of Pavement Engineering. Oct2014, Vol. 15 Issue 9, p786-798. 13p.
Publication Year :
2014

Abstract

A finite-element response model was developed using ABAQUS software package to investigate the effect of geogrid base reinforcement on the response of a flexible pavement structure. Finite-element analyses were then conducted on different unreinforced and geogrid-reinforced flexible pavement sections. In this analysis, the base course (BC) layer was modelled using an elasto-plastic bounding surface model. The results of the finite-element analyses showed that the geogrid reinforcement reduced the lateral strains within the BC and subgrade layers, the vertical strain and shear strain at top of subgrade, and the surface permanent deformation. The higher tensile modulus geogrid resulted in larger reduction of surface permanent deformation. Based on the response parameters computed from the finite element analysis, the improvement of using geogrid for BC reinforcement was then evaluated using the damage models for rutting in the mechanistic–empirical method developed through NCHRP Project 1-37a. The results of mechanistic–empirical analyses showed that the traffic benefit ratio values can reach as high as 3.7 for thin base pavement section built over weak subgrade using high tensile modulus geogrid. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10298436
Volume :
15
Issue :
9
Database :
Academic Search Index
Journal :
International Journal of Pavement Engineering
Publication Type :
Academic Journal
Accession number :
97901778
Full Text :
https://doi.org/10.1080/10298436.2014.893315