Back to Search Start Over

Large eddy simulations and rotational CARS/PIV/PLIF measurements of a lean premixed low swirl stabilized flame.

Authors :
Carlsson, Henning
Nordström, Emil
Bohlin, Alexis
Petersson, Per
Wu, Yajing
Collin, Robert
Aldén, Marcus
Bengtsson, Per-Erik
Bai, Xue-Song
Source :
Combustion & Flame. Oct2014, Vol. 161 Issue 10, p2539-2551. 13p.
Publication Year :
2014

Abstract

This paper reports on numerical and experimental studies of a lean premixed low swirl stabilized methane/air flame. The burner is made up of a central perforated plate and an annular swirler. A premixed methane/air mixture at an equivalence ratio of 0.62 is injected to an ambient co-flow of air through the burner under atmospheric pressure and room temperature condition with a Reynolds number of 30,000. Stereoscopic Particle Image Velocimetry (PIV) and simultaneous OH/acetone Planar Laser Induced Fluorescence (PLIF) are used to characterize the flame front and the turbulence field downstream of the burner. The flame is stabilized in the low speed central region and in the inner shear-layer vortices, where ambient air dilution to the flame is found to eventually quench the reactions downstream. Rotational Coherent Anti-Stokes Raman Spectroscopy (RCARS) measurements are carried out to characterize the temperature field and the relative oxygen mole fraction field, which enables quantification of the air dilution to the flame. The experimental data provides a challenging test case for numerical simulation models owing to the stratification of the mixture and quenching of the flame. Large eddy simulations are carried out using a three-scalar level-set G-equation flamelet model, which is shown to capture the basic flame characteristics and quenching at the trailing edge of the flame. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00102180
Volume :
161
Issue :
10
Database :
Academic Search Index
Journal :
Combustion & Flame
Publication Type :
Academic Journal
Accession number :
97844714
Full Text :
https://doi.org/10.1016/j.combustflame.2014.03.017