Back to Search Start Over

New insights into self-heating in double-gate transistors by solving Boltzmann transport equations.

Authors :
Trang Nghiêm, T. Thu
Saint-Martin, J.
Dollfus, P.
Source :
Journal of Applied Physics. 2014, Vol. 116 Issue 7, p074514-1-074514-9. 9p. 1 Chart, 12 Graphs.
Publication Year :
2014

Abstract

Electro-thermal effects become one of the most critical issues for continuing the downscaling of electron devices. To study this problem, a new efficient self-consistent electron-phonon transport model has been developed. Our model of phonon Boltzmann transport equation (pBTE) includes the decay of optical phonons into acoustic modes and a generation term given by electron-Monte Carlo simulation. The solution of pBTE uses an analytic phonon dispersion and the relaxation time approximation for acoustic and optical phonons. This coupled simulation is applied to investigate the self-heating effects in a 20 nm-long double gate MOSFET. The temperature profile per mode and the comparison between Fourier temperature and the effective temperature are discussed. Some significant differences occur mainly in the hot spot region. It is shown that under the influence of self-heating effects, the potential profile is modified and both the drain current and the electron ballisticity are reduced because of enhanced electron-phonon scattering rates. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
116
Issue :
7
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
97641797
Full Text :
https://doi.org/10.1063/1.4893646