Back to Search Start Over

Guanylyl Cyclase-G Modulates Jejunal Apoptosis and Inflammation in Mice with Intestinal Ischemia and Reperfusion.

Authors :
Lo, Hui-Chen
Yang, Ruey-Bing
Lee, Chien-Hsing
Source :
PLoS ONE. Jul2014, Vol. 9 Issue 7, p1-11. 11p.
Publication Year :
2014

Abstract

Background: Membrane bound guanylyl cyclase-G (mGC-G), a novel form of GC mediates ischemia and reperfusion (IR)-induced renal injury. We investigated the roles of mGC-G in intestinal IR-induced jejunal damage, inflammation, and apoptosis. Materials and methods: Male C57BL/6 wild-type (WT) and mGC-G gene knockout (KO) mice were treated with a sham operation or 45 min of superior mesenteric arterial obstruction followed by 3, 6, 12, or 24 h of reperfusion. Results: Sham-operated KO mice had significantly lower plasma nitrate and nitrite (NOx) levels and jejunal villus height, crypt depth, and protein expression of phosphorylated-nuclear factor-kappa-B (NF-κB), phosphorylated-c-Jun N-terminal kinases (JNK) 2/3, phosphorylated-p38, and B-cell lymphoma-2 (Bcl-2). They had significantly greater jejunal interleukin-6 mRNA, cytochrome c protein, and apoptotic index compared with sham-operated WT mice. Intestinal IR significantly decreased plasma NOx in WT mice and increased plasma NOx in KO mice. The jejunal apoptotic index and caspase 3 activities were significantly increased, and nuclear phosphorylated-NF-κB and phosphorylated-p38 protein were significantly decreased in WT, but not KO mice with intestinal IR. After reperfusion, KO mice had an earlier decrease in jejunal cyclic GMP, and WT mice had an earlier increase in jejunal proliferation and a later increase in cytosol inhibitor of kappa-B-alpha. Intestinal IR induced greater increases in plasma and jejunal interleukin-6 protein in WT mice and a greater increase in jejunal interleukin-6 mRNA in KO mice. Conclusions: mGC-G is involved in the maintenance of jejunal integrity and intestinal IR-induced inflammation and apoptosis. These results suggest that targeting cGMP pathway might be a potential strategy to alleviate IR-induced jejunal damages. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
7
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
97360506
Full Text :
https://doi.org/10.1371/journal.pone.0101314