Back to Search Start Over

Structural rearrangements of a polyketide synthase module during its catalytic cycle.

Authors :
Whicher, Jonathan R.
Dutta, Somnath
Hansen, Douglas A.
Hale, Wendi A.
Chemler, Joseph A.
Dosey, Annie M.
Narayan, Alison R. H.
Håkansson, Kristina
Sherman, David H.
Smith, Janet L.
Skiniotis, Georgios
Source :
Nature. 6/26/2014, Vol. 510 Issue 7506, p560-564. 5p. 4 Diagrams.
Publication Year :
2014

Abstract

The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents1. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the β-keto intermediate, and after β-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00280836
Volume :
510
Issue :
7506
Database :
Academic Search Index
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
96871543
Full Text :
https://doi.org/10.1038/nature13409