Back to Search Start Over

Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride).

Authors :
Li, Fang
Arthur, Ernest Evans
La, Dahye
Li, Qiming
Kim, Hern
Source :
Energy. Jul2014, Vol. 71, p32-39. 8p.
Publication Year :
2014

Abstract

Abstract: Composite nanofiber sheets containing multiwalled carbon nanotubes and cobalt chloride dispersed in PAN (polyacrylonitrile) were produced by an electrospinning technique. The synthesized PAN/CoCl2/CNTs composite nanofiber was used as the catalyst for hydrogen production from the hydrolysis of sodium borohydride. FT-IR characterization showed that the pretreated CNTs possess different organic functional groups which help improve the compatibility between CNTs and PAN organic polymer. SEM (scanning electron microscopy), TEM (transmission electron microscopy) and EDX (energy-dispersive X-ray technique) were used to characterize the composite nanofiber and it was found that CNTs can be coaxially dispersed into the PAN nanofiber. During the hydrolysis of NaBH4, this PAN/CoCl2/CNTs composite nanofiber exhibited higher catalytic activity compared to the composite without CNTs doping. Kinetic analysis of NaBH4 hydrolysis shows that the reaction of NaBH4 hydrolysis based on this catalyst can be ascribed to the first-order reaction and the activation energy of the catalyst was approximately 52.857 kJ/mol. Meanwhile, the composite nanofiber catalyst shows excellent stability and reusability in the recycling experiment. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03605442
Volume :
71
Database :
Academic Search Index
Journal :
Energy
Publication Type :
Academic Journal
Accession number :
96666523
Full Text :
https://doi.org/10.1016/j.energy.2014.03.130