Back to Search Start Over

The Involvement of NFAT Transcriptional Activity Suppression in SIRT1-Mediated Inhibition of COX-2 Expression Induced by PMA/Ionomycin.

Authors :
Jia, Yu-Yan
Lu, Jie
Huang, Yue
Liu, Guang
Gao, Peng
Wan, Yan-Zhen
Zhang, Ran
Zhang, Zhu-Qin
Yang, Rui-Feng
Tang, Xiaoqiang
Xu, Jing
Wang, Xu
Chen, Hou-Zao
Liu, De-Pei
Source :
PLoS ONE. May2014, Vol. 9 Issue 5, p1-11. 11p.
Publication Year :
2014

Abstract

SIRT1, a class III histone deacetylase, acts as a negative regulator for many transcription factors, and plays protective roles in inflammation and atherosclerosis. Transcription factor nuclear factor of activated T cells (NFAT) has been previously shown to play pro-inflammatory roles in endothelial cells. Inhibition of NFAT signaling may be an attractive target to regulate inflammation in atherosclerosis. However, whether NFAT transcriptional activity is suppressed by SIRT1 remains unknown. In this study, we found that SIRT1 suppressed NFAT-mediated transcriptional activity. SIRT1 interacted with NFAT, and the NHR and RHR domains of NFAT mediated the interaction with SIRT1. Moreover, we found that SIRT1 primarily deacetylated NFATc3. Adenoviral over-expression of SIRT1 suppressed PMA and calcium ionophore Ionomycin (PMA/Io)-induced COX-2 expression in human umbilical vein endothelial cells (HUVECs), while SIRT1 RNAi reversed the effects in HUVECs. Moreover, inhibition of COX-2 expression by SIRT1 in PMA/Io-treated HUVECs was largely abrogated by inhibiting NFAT activation. Furthermore, SIRT1 inhibited NFAT-induced COX-2 promoter activity, and reduced NFAT binding to the COX-2 promoter in PMA/Io-treated HUVECs. These results suggest that suppression of NFAT transcriptional activity is involved in SIRT1-mediated inhibition of COX-2 expression induced by PMA/Io, and that the negative regulatory mechanisms of NFAT by SIRT1 may contribute to its anti-inflammatory effects in atherosclerosis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
5
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
96283884
Full Text :
https://doi.org/10.1371/journal.pone.0097999