Back to Search Start Over

Bridging the gap between structure and kinetics of human SGLT1.

Authors :
Sala-Rabanal, Monica
Hirayama, Bruce A.
Loo, Donald D. F.
Chaptal, Vincent
Abramson, Jeff
Wright, Ernest M.
Source :
American Journal of Physiology: Cell Physiology. May2012, Vol. 302 Issue 9, pC1293-C1305. 13p.
Publication Year :
2012

Abstract

The Na+-glucose cotransporter hSGLT1 is a member of a class of membrane proteins that harness Na+ electrochemical gradients to drive uphill solute transport. Although hSGLT1 belongs to one gene family (SLC5), recent structural studies of bacterial Na+ cotransporters have shown that Na+ transporters in different gene families have the same structural fold. We have constructed homology models of hSGLT1 in two conformations, the inward-facing occluded (based on vSGLT) and the outward open conformations (based on Mhp1), mutated in turn each of the conserved gates and ligand binding residues, expressed the SGLT1 mutants in Xenopus oocytes, and determined the functional consequences using biophysical and biochemical assays. The results establish that mutating the ligand binding residues produces profound changes in the ligand affinity (the halfsaturation concentration, K0.5); e.g., mutating sugar binding residues increases the glucose K0.5 by up to three orders of magnitude. Mutation of the external gate residues increases the Na+ to sugar transport stoichiometry, demonstrating that these residues are critical for efficient cotransport. The changes in phlorizin inhibition constant (Ki) are proportional to the changes in sugar K0.5, except in the case of F101C, where phlorizin Ki increases by orders of magnitude without a change in glucose K0.5. We conclude that glucose and phlorizin occupy the same binding site and that F101 is involved in binding to the phloretin group of the inhibitor. Substituted-cysteine accessibility methods show that the cysteine residues at the position of the gates and sugar binding site are largely accessible only to external hydrophilic methanethiosulfonate reagents in the presence of external Na+, demonstrating that the external sugar (and phlorizin) binding vestibule is opened by the presence of external Na+ and closes after the binding of sugar and phlorizin. Overall, the present results provide a bridge between kinetics and structural studies of cotransporters. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03636143
Volume :
302
Issue :
9
Database :
Academic Search Index
Journal :
American Journal of Physiology: Cell Physiology
Publication Type :
Academic Journal
Accession number :
95873882
Full Text :
https://doi.org/10.1152/ajpcell.00397.2011