Back to Search Start Over

Explanation of the surface peak in charge integrated LEIS spectra

Authors :
Draxler, M.
Beikler, R.
Taglauer, E.
Schmid, K.
Gruber, R.
Ermolov, S.N.
Bauer, P.
Source :
Nuclear Instruments & Methods in Physics Research Section B. Apr2003, Vol. 203 Issue 1-4, p218. 7p.
Publication Year :
2003

Abstract

Low energy ion scattering is very surface sensitive if scattered ions are analyzed. By time-of-flight (TOF) techniques, also neutral and charge integrated spectra (ions plus neutrals) can be obtained, which yield information about deeper layers. In the literature, the observation of a more or less pronounced surface peak was reported for charge integrated spectra, the intensity of the surface peak being higher at low energies and for heavy projectiles.Aiming at a more profound physical understanding of this surface peak, we performed TOF-experiments and computer simulations for He projectiles and a copper target. Experiments were done in the range 1–9 keV for a scattering angle of 129°. The simulation was performed using the MARLOWE code for the given experimental parameters and a polycrystalline target. At low energies, a pronounced surface peak was observed, which fades away at higher energies. This peak is quantitatively reproduced by the simulation, and corresponds to scattering from ∼2 atomic layers.Analyzing the contributions of the individual outermost atomic layers, one finds that the surface peak is due to binary collisions of projectiles with atoms in the first and second layer, while the contribution from deeper layers is dominated by multiple scattering. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
0168583X
Volume :
203
Issue :
1-4
Database :
Academic Search Index
Journal :
Nuclear Instruments & Methods in Physics Research Section B
Publication Type :
Academic Journal
Accession number :
9570932
Full Text :
https://doi.org/10.1016/S0168-583X(02)02220-6