Back to Search Start Over

Endogenous α-calcitonin-gene-related peptide promotes exercise-induced, physiological heart hypertrophy in mice.

Authors :
Schuler, B.
Rieger, G.
Gubser, M.
Arras, M.
Gianella, M.
Vogel, O.
Jirkof, P.
Cesarovic, N.
Klohs, J.
Jakob, P.
Brock, M.
Gorr, T. A.
Baum, O.
Hoppeler, H.
Samillan‐Soto, V.
Gassmann, M.
Fischer, J. A.
Born, W.
Vogel, J.
Source :
Acta Physiologica. May2014, Vol. 211 Issue 1, p107-121. 15p. 5 Charts, 4 Graphs.
Publication Year :
2014

Abstract

Aim It is unknown how the heart distinguishes various overloads, such as exercise or hypertension, causing either physiological or pathological hypertrophy. We hypothesize that alpha-calcitonin-gene-related peptide (α CGRP), known to be released from contracting skeletal muscles, is key at this remodelling. Methods The hypertrophic effect of α CGRP was measured in vitro (cultured cardiac myocytes) and in vivo (magnetic resonance imaging) in mice. Exercise performance was assessed by determination of maximum oxygen consumption and time to exhaustion. Cardiac phenotype was defined by transcriptional analysis, cardiac histology and morphometry. Finally, we measured spontaneous activity, body fat content, blood volume, haemoglobin mass and skeletal muscle capillarization and fibre composition. Results While α CGRP exposure yielded larger cultured cardiac myocytes, exercise-induced heart hypertrophy was completely abrogated by treatment with the peptide antagonist CGRP(8-37). Exercise performance was attenuated in αCGRP−/− mice or CGRP(8-37) treated wild-type mice but improved in animals with higher density of cardiac CGRP receptors ( CLR-tg). Spontaneous activity, body fat content, blood volume, haemoglobin mass, muscle capillarization and fibre composition were unaffected, whereas heart index and ventricular myocyte volume were reduced in α CGRP−/− mice and elevated in CLR-tg. Transcriptional changes seen in α CGRP−/− (but not CLR-tg) hearts resembled maladaptive cardiac phenotype. Conclusions Alpha-calcitonin-gene-related peptide released by skeletal muscles during exercise is a hitherto unrecognized effector directing the strained heart into physiological instead of pathological adaptation. Thus, α CGRP agonists might be beneficial in heart failure patients. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17481708
Volume :
211
Issue :
1
Database :
Academic Search Index
Journal :
Acta Physiologica
Publication Type :
Academic Journal
Accession number :
95661986
Full Text :
https://doi.org/10.1111/apha.12244