Back to Search Start Over

Template banks for binary black hole searches with numerical relativity waveforms.

Authors :
Kumar, Prayush
MacDonald, Ilana
Brown, Duncan A.
Pfeiffer, Harald P.
Cannon, Kipp
Boyle, Michael
Kidder, Lawrence E.
Mroué, Abdul H.
Scheel, Mark A.
Szilágyi, Béla
Zenginoğlu, Anıl
Source :
Physical Review D: Particles, Fields, Gravitation & Cosmology. Feb2014, Vol. 89 Issue 4, p1-18. 18p.
Publication Year :
2014

Abstract

Gravitational waves from coalescing stellar-mass black hole binaries (BBHs) are expected to be detected by the Advanced Laser Interferometer gravitational-wave observatory and Advanced Virgo. Detection searches operate by matched filtering the detector data using a bank of waveform templates. Traditionally, template banks for BBHs are constructed from intermediary analytical waveform models which are calibrated against numerical relativity simulations and which can be evaluated for any choice of BBH parameters. This paper explores an alternative to the traditional approach, namely, the construction of template banks directly from numerical BBH simulations. Using nonspinning BBH systems as an example, we demonstrate which regions of the mass-parameter plane can be covered with existing numerical BBH waveforms. We estimate the required number and required length of BBH simulations to cover the entire nonspinning BBH parameter plane up to mass ratio 10, thus illustrating that our approach can be used to guide parameter placement of future numerical simulations. We derive error bounds which are independent of analytical waveform models; therefore, our formalism can be used to independently test the accuracy of such waveform models. The resulting template banks are suitable for advanced LIGO searches. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24700010
Volume :
89
Issue :
4
Database :
Academic Search Index
Journal :
Physical Review D: Particles, Fields, Gravitation & Cosmology
Publication Type :
Periodical
Accession number :
95532910
Full Text :
https://doi.org/10.1103/PhysRevD.89.042002