Back to Search Start Over

Magnetoelectric coupling characteristics of five-phase laminate composite transducers based on nanocrystalline soft magnetic alloy.

Authors :
Jing Qiu
Yumei Wen
Ping Li
Hengjia Chen
Source :
Applied Physics Letters. 3/17/2014, Vol. 104 Issue 11, p1-4. 4p. 3 Diagrams, 3 Graphs.
Publication Year :
2014

Abstract

A five-phase laminate composite transducer based on nanocrystalline soft magnetic FeCuNbSiB alloy is presented, whose magnetoelectric (ME) coupling characteristics have been investigated. It is found that the resonant ME voltage coefficient of FeCuNbSiB/Terfenol-D/Pb(Zr1-x,Tix)O3 (PZT)/Terfenol-D/FeCuNbSiB (FMPMF) five-phase transducer is much larger than that of traditional Terfenol-D/PZT/Terfenol-D (MPM) transducer, resulting from the enhancement of the effective mechanical quality factor and effective piezomagnetic coefficient of the transducers. Appropriate FeCuNbSiB layer thickness is propitious to the resonant and low-frequency ME coupling characteristics. The maximum resonant ME voltage coefficient achieves 4.81 V/Oe with FeCuNbSiB layer thickness is 60 μm under the DC bias magnetic field Hb=77 Oe, which is 1.48 times as great as that of traditional MPM transducer. In addition, the maximum ME voltage coefficient at low frequency is 51.2 mV/Oe under the DC bias magnetic field Hb=442 Oe, which is 1.26 times as great as that of traditional MPM transducer. It indicates that the mentioned five-phase laminate composite transducers have great potential for the application of highly sensitive dc magnetic field sensing and vibration energy harvesting. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
104
Issue :
11
Database :
Academic Search Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
95066391
Full Text :
https://doi.org/10.1063/1.4868983