Back to Search
Start Over
Differential Evolution for Lifetime Maximization of Heterogeneous Wireless Sensor Networks.
- Source :
-
Mathematical Problems in Engineering . 2013, p1-12. 12p. - Publication Year :
- 2013
-
Abstract
- Maximizing the lifetime of wireless sensor networks (WSNs) is a hot and significant issue. However, using differential evolution (DE) to research this problem has not appeared so far. This paper proposes a DE-based approach that can maximize the lifetime of WSN through finding the largest number of disjoint sets of sensors, with every set being able to completely cover the target. Different from other methods in the literature, firstly we introduce a common method to generate test data set and then propose an algorithm using differential evolution to solve disjoint set covers (DEDSC) problems. The proposed algorithm includes a recombining operation, which performs after initialization and guarantees at least one critical target's sensor is divided into different disjoint sets. Moreover, the fitness computation in DEDSC contains both the number of complete cover subsets and the coverage percent of incomplete cover subsets. Applications for sensing a number of target points, named point-coverage, have been used for evaluating the effectiveness of algorithm. Results show that the proposed algorithm DEDSC is promising and simple; its performance out performs or is similar to other existing excellent approaches in both optimization speed and solution quality. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1024123X
- Database :
- Academic Search Index
- Journal :
- Mathematical Problems in Engineering
- Publication Type :
- Academic Journal
- Accession number :
- 94812705
- Full Text :
- https://doi.org/10.1155/2013/172783