Back to Search Start Over

Effect of nonstoichiometry on the half-metallic character of Co2MnSi investigated through saturation magnetization and tunneling magnetoresistance ratio.

Authors :
Gui-fang Li
Yusuke Honda
Hong-xi Liu
Ken-ichi Matsuda
Masashi Arita
Tetsuya Uemura
Masafumi Yamamoto
Yoshio Miura
Masafumi Shirai
Toshiaki Saito
Fengyuan Shi
Voyles, Paul M.
Source :
Physical Review B: Condensed Matter & Materials Physics. Jan2014, Vol. 89 Issue 1, p014428-1-014428-14. 14p.
Publication Year :
2014

Abstract

We investigated the effect of nonstoichiometry on the half-metallic character of the Heusler alloy Co2MnSi (CMS) through the Mn composition (β) dependence of the saturation magnetization per formula unit (μs) of Co2MnβSiβ thin films and the tunneling magnetoresistance (TMR) ratio of CMS/MgO/CMS magnetic tunnel junctions (CMS MTJs) having Co2MnβSiβ electrodes. As a basis for understanding the effect of nonstoichiometry in CMS, we developed a generalized form of the site-specific formula unit (SSFU) composition model, which assumes the formation of only antisite defects, not vacancies, to accommodate nonstoichiometry. The β dependence of μs was well explained by density functional calculations with the coherent potential approximation based on the SSFU composition model for β up to a certain critical value (βc)>1.0. The μs data for Mn-deficient films deviated from the Slater-Pauling predicted data for half-metals due to Co atoms at the nominal Mn sites (CoMn). The theoretical spin polarizations, obtained from only the s- and p-orbital components, Pth(sp), were found to qualitatively explain the β dependence of the TMR ratio except for β>βc. This is in contrast to the theoretical spin polarizations obtained from the s-, p-, and d-orbital components, Pth(spd).Adecrease in theTMR ratio observed for CMSMTJs havingMn-deficient electrodes was ascribed to small s- and p-orbital components of the local density of minority-spin in-gap states at the Fermi level that appeared for both antisite CoMn atoms and Co atoms at the regular sites. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10980121
Volume :
89
Issue :
1
Database :
Academic Search Index
Journal :
Physical Review B: Condensed Matter & Materials Physics
Publication Type :
Academic Journal
Accession number :
94711233
Full Text :
https://doi.org/10.1103/PhysRevB.89.014428