Back to Search Start Over

Divergent Metabolic Phenotype between Two Sisters with Congenital Generalized Lipodystrophy Due to Double AGPAT2 Homozygous Mutations. A Clinical, Genetic and In Silico Study.

Authors :
Cortés, Víctor A.
Smalley, Susan V.
Goldenberg, Denisse
Lagos, Carlos F.
Hodgson, María I.
Santos, José L.
Source :
PLoS ONE. Jan2014, Vol. 9 Issue 1, p1-6. 6p.
Publication Year :
2014

Abstract

Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder characterized by extreme reduction of white adipose tissue (WAT) mass. CGL type 1 is the most frequent form and is caused by mutations in AGPAT2. Genetic and clinical studies were performed in two affected sisters of a Chilean family. These patients have notoriously dissimilar metabolic abnormalities that correlate with differential levels of circulating leptin and soluble leptin receptor fraction. Sequencing of AGPAT2 exons and exon-intron boundaries revealed two homozygous mutations in both sisters. Missense mutation c.299G>A changes a conserved serine in the acyltransferase NHX4D motif of AGPAT2 (p.Ser100Asn). Intronic c.493-1G>C mutation destroy a conserved splicing site that likely leads to exon 4 skipping and deletion of whole AGPAT2 substrate binding domain. In silico protein modeling provided insights of the mechanisms of lack of catalytic activity owing to both mutations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
1
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
94236010
Full Text :
https://doi.org/10.1371/journal.pone.0087173