Back to Search Start Over

Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching.

Authors :
Zhang, Shuming
Liu, Xi
Barreto-Ortiz, Sebastian F.
Yu, Yixuan
Ginn, Brian P.
DeSantis, Nicholas A.
Hutton, Daphne L.
Grayson, Warren L.
Cui, Fu-Zhai
Korgel, Brian A.
Gerecht, Sharon
Mao, Hai-Quan
Source :
Biomaterials. Mar2014, Vol. 35 Issue 10, p3243-3251. 9p.
Publication Year :
2014

Abstract

Abstract: Hydrogels have been widely used for 3-dimensional (3D) cell culture and tissue regeneration due to their tunable biochemical and physicochemical properties as well as their high water content, which resembles the aqueous microenvironment of the natural extracellular matrix. While many properties of natural hydrogel matrices are modifiable, their intrinsic isotropic structure limits the control over cellular organization, which is critical to restore tissue function. Here we report a generic approach to incorporate alignment topography inside the hydrogel matrix using a combination of electrical and mechanical stretching. Hydrogel fibres with uniaxial alignment were prepared from aqueous solutions of natural polymers such as alginate, fibrin, gelatin, and hyaluronic acid under ambient conditions. The unique internal alignment feature drastically enhances the mechanical properties of the hydrogel microfibres. Furthermore, the facile, organic solvent-free processing conditions are amenable to the incorporation of live cells within the hydrogel fibre or on the fibre surface; both approaches effectively induce cellular alignment. This work demonstrates a versatile and scalable strategy to create aligned hydrogel microfibres from various natural polymers. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01429612
Volume :
35
Issue :
10
Database :
Academic Search Index
Journal :
Biomaterials
Publication Type :
Academic Journal
Accession number :
94155581
Full Text :
https://doi.org/10.1016/j.biomaterials.2013.12.081