Back to Search Start Over

The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse.

Authors :
Yamamoto, Daniel L.
Vitiello, Carmen
Jianlin Zhang
Gokhin, David S.
Castaldi, Alessandra
Coulis, Gerald
Piaser, Fabio
Filomena, Maria Carmela
Eggenhuizen, Peter J.
Kunderfranco, Paolo
Camerini, Serena
Takano, Kazunori
Endo, Takeshi
Crescenzi, Marco
Luther, Pradeep K. L.
Lieber, Richard L.
Ju Chen
Bang, Marie-Louise
Source :
Journal of Cell Science. 12/1/2013, Vol. 126 Issue 23, p5477-5489. 13p.
Publication Year :
2013

Abstract

Nemaline myopathy (NM) is a congenital myopathy with an estimated incidence of 1:50,000 live births. It is caused by mutations in thin filament components, including nebulin, which accounts for about 50% of the cases. The identification of NM cases with nonsense mutations resulting in loss of the extreme C-terminal SH3 domain of nebulin suggests an important role of the nebulin SH3 domain, which is further supported by the recent demonstration of its role in IGF-1-induced sarcomeric actin filament formation through targeting of N-WASP to the Z-line. To provide further insights into the functional significance of the nebulin SH3 domain in the Z-disk and to understand the mechanisms by which truncations of nebulin lead to NM, we took two approaches: (1) an affinity-based proteomic screening to identify novel interaction partners of the nebulin SH3 domain; and (2) generation and characterization of a novel knockin mouse model with a premature stop codon in the nebulin gene, eliminating its C-terminal SH3 domain (NebDSH3 mouse). Surprisingly, detailed analyses of NebDSH3 mice revealed no structural or histological skeletal muscle abnormalities and no changes in gene expression or localization of interaction partners of the nebulin SH3 domain, including myopalladin, palladin, zyxin and N-WASP. Also, no significant effect on peak isometric stress production, passive tensile stress or Young's modulus was found. However, NebDSH3 muscle displayed a slightly altered force-frequency relationship and was significantly more susceptible to eccentric contraction-induced injury, suggesting that the nebulin SH3 domain protects against eccentric contraction-induced injury and possibly plays a role in finetuning the excitation-contraction coupling mechanism. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219533
Volume :
126
Issue :
23
Database :
Academic Search Index
Journal :
Journal of Cell Science
Publication Type :
Academic Journal
Accession number :
93989335
Full Text :
https://doi.org/10.1242/jcs.137026