Back to Search Start Over

High Frequency Stimulation of the Subthalamic Nucleus Leads to Presynaptic GABA(B)-Dependent Depression of Subthalamo-Nigral Afferents.

Authors :
Dvorzhak, Anton
Gertler, Christoph
Harnack, Daniel
Grantyn, Rosemarie
Source :
PLoS ONE. Dec2013, Vol. 8 Issue 12, p1-16. 16p.
Publication Year :
2013

Abstract

Patients with akinesia benefit from chronic high frequency stimulation (HFS) of the subthalamic nucleus (STN). Among the mechanisms contributing to the therapeutic success of HFS-STN might be a suppression of activity in the output region of the basal ganglia. Indeed, recordings in the substantia nigra pars reticulata (SNr) of fully adult mice revealed that HFS-STN consistently produced a reduction of compound glutamatergic excitatory postsynaptic currents at a time when the tetrodotoxin-sensitive components of the local field potentials had already recovered after the high frequency activation. These observations suggest that HFS-STN not only alters action potential conduction on the way towards the SNr but also modifies synaptic transmission within the SNr. A classical conditioning-test paradigm was then designed to better separate the causes from the indicators of synaptic depression. A bipolar platinum-iridium macroelectrode delivered conditioning HFS trains to a larger group of fibers in the STN, while a separate high-ohmic glass micropipette in the rostral SNr provided test stimuli at minimal intensity to single fibers. The conditioning-test interval was set to 100 ms, i.e. the time required to recover the excitability of subthalamo-nigral axons after HFS-STN. The continuity of STN axons passing from the conditioning to the test sites was examined by an action potential occlusion test. About two thirds of the subthalamo-nigral afferents were occlusion-negative, i.e. they were not among the fibers directly activated by the conditioning STN stimulation. Nonetheless, occlusion-negative afferents exhibited signs of presynaptic depression that could be eliminated by blocking GABA(B) receptors with CGP55845 (1 µM). Further analysis of single fiber-activated responses supported the proposal that the heterosynaptic depression of synaptic glutamate release during and after HFS-STN is mainly caused by the tonic release of GABA from co-activated striato-nigral afferents to the SNr. This mechanism would be consistent with a gain-of-function hypothesis of DBS. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
12
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
93396315
Full Text :
https://doi.org/10.1371/journal.pone.0082191