Back to Search Start Over

Genetic interval neural networks for granular data regression.

Authors :
Cimino, Mario G.C.A.
Lazzerini, Beatrice
Marcelloni, Francesco
Pedrycz, Witold
Source :
Information Sciences. Feb2014, Vol. 257, p313-330. 18p.
Publication Year :
2014

Abstract

Abstract: Granular data and granular models offer an interesting tool for representing data in problems involving uncertainty, inaccuracy, variability and subjectivity have to be taken into account. In this paper, we deal with a particular type of information granules, namely interval-valued data. We propose a multilayer perceptron (MLP) to model interval-valued input–output mappings. The proposed MLP comes with interval-valued weights and biases, and is trained using a genetic algorithm designed to fit data with different levels of granularity. In the evolutionary optimization, two implementations of the objective function, based on a numeric-valued and an interval-valued network error, respectively, are discussed and compared. The modeling capabilities of the proposed MLP are illustrated by means of its application to both synthetic and real world datasets. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00200255
Volume :
257
Database :
Academic Search Index
Journal :
Information Sciences
Publication Type :
Periodical
Accession number :
92654830
Full Text :
https://doi.org/10.1016/j.ins.2012.12.049