Back to Search Start Over

Observational evidence for dissociative shocks in the inner 100 AU of low-mass protostars using Herschel-HIFI.

Authors :
Kristensen, L. E.
van Dishoeck, E. F.
Benz, A.O.
Bruderer, S.
Visser, R.
Wampfler, S. F.
Source :
Astronomy & Astrophysics / Astronomie et Astrophysique. Sep2013, Vol. 557 Issue 1, p1-13. 13p.
Publication Year :
2013

Abstract

Aims. Herschel-HIFI spectra of H2O towards low-mass protostars show a distinct velocity component not seen in observations from the ground of CO or other species. The aim is to characterise this component in terms of excitation conditions and physical origin. Methods. A velocity component with an offset of ~10 km s-1 detected in spectra of the H2O 110-101 557 GHz transition towards six low-mass protostars in the "Water in star-forming regions with Herschel" (WISH) programme is also seen in higher-excited H2O lines. The emission from this component is quantified and local excitation conditions are inferred using 1D slab models. Data are compared to observations of hydrides (high-J CO, OH+, CH+, C+, OH) where the same component is uniquely detected. Results. The velocity component is detected in all six targeted H2O transitions (Eup ~ 50-250 K), as well as in CO 16-15 towards one source, Ser SMM1. Inferred excitation conditions imply that the emission arises in dense (n ~ 5 × 106-108 cm-3) and hot (T ~ 750 K) gas. The H2O and CO column densities are ≳1016 and 1018 cm-2, respectively, implying a low H2O abundance of ~10-2 with respect to CO. The high column densities of ions such as OH+ and CH+ (both ≳1013 cm-2) indicate an origin close to the protostar where the UV field is strong enough that these species are abundant. The estimated radius of the emitting region is 100 AU. This component likely arises in dissociative shocks close to the protostar, an interpretation corroborated by a comparison with models of such shocks. Furthermore, one of the sources, IRAS 4A, shows temporal variability in the offset component over a period of two years which is expected from shocks in dense media. High-J CO gas detected with Herschel-PACS with Trot ~ 700 K is identified as arising in the same component and traces the part of the shock where H2 reforms. Thus, H2O reveals new dynamical components, even on small spatial scales in low-mass protostars. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00046361
Volume :
557
Issue :
1
Database :
Academic Search Index
Journal :
Astronomy & Astrophysics / Astronomie et Astrophysique
Publication Type :
Academic Journal
Accession number :
90587943
Full Text :
https://doi.org/10.1051/0004-6361/201321619