Back to Search
Start Over
CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS.
- Source :
-
Journal of the Australian Mathematical Society . Apr2013, Vol. 94 Issue 2, p268-275. 8p. - Publication Year :
- 2013
-
Abstract
- We prove that when $(a, m)= 1$ and $a$ is a quadratic residue $\hspace{0.167em} \mathrm{mod} \hspace{0.167em} m$, there are infinitely many Carmichael numbers in the arithmetic progression $a\hspace{0.167em} \mathrm{mod} \hspace{0.167em} m$. Indeed the number of them up to $x$ is at least ${x}^{1/ 5} $ when $x$ is large enough (depending on $m$). [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14467887
- Volume :
- 94
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Journal of the Australian Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 90161229
- Full Text :
- https://doi.org/10.1017/S1446788712000547