Back to Search Start Over

CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS.

Authors :
MATOMÄKI, KAISA
Source :
Journal of the Australian Mathematical Society. Apr2013, Vol. 94 Issue 2, p268-275. 8p.
Publication Year :
2013

Abstract

We prove that when $(a, m)= 1$ and $a$ is a quadratic residue $\hspace{0.167em} \mathrm{mod} \hspace{0.167em} m$, there are infinitely many Carmichael numbers in the arithmetic progression $a\hspace{0.167em} \mathrm{mod} \hspace{0.167em} m$. Indeed the number of them up to $x$ is at least ${x}^{1/ 5} $ when $x$ is large enough (depending on $m$). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14467887
Volume :
94
Issue :
2
Database :
Academic Search Index
Journal :
Journal of the Australian Mathematical Society
Publication Type :
Academic Journal
Accession number :
90161229
Full Text :
https://doi.org/10.1017/S1446788712000547