Back to Search Start Over

Differential transformation capacity of neuro-glial progenitors during development.

Authors :
Muñoz, Diana Marcela
Sanjay Singh
Takyee Tung
Agnihotri, Sameer
Nagy, Andras
Guha, Abhijit
Zadeh, Gelareh
Hawkins, Cynthia
Source :
Proceedings of the National Academy of Sciences of the United States of America. 8/27/2013, Vol. 110 Issue 35, p14378-14383. 6p.
Publication Year :
2013

Abstract

Gliomas represent the most common type of brain tumor, but show considerable variability in histologic appearance and clinical outcome. The phenotypic differences between types and grades of gliomas have not been explained solely on the grounds of differing oncogenic stimuli. Several studies have demonstrated that some phenotypic differences may be attributed to regional differences in the neural stem cells from which tumors arise. We hypothesized that temporal differences may also play a role, with tumor phenotypic variability reflecting intrinsic differences in neural stem cells at distinct developmental stages. To determine how the tumorigenic potential of lineally related stem cells changes over time, we used a conditional transgenic system that integrates Cre-Lox-mediated and Tet-regulated expression to drive K-rasG12D expression in neuro-glial progenitor populations at different developmental time points. Using this model, we demonstrate that K-rasG12D-induced transformation is dependent on the developmental stage at which it is introduced. Diffuse malignant brain tumors develop during early embryogenesis but not when K-rasG12D expression is induced during late embryogenesis or early postnatal life. We show that differential expression of cell-cycle regulators during development may be responsible for this differing susceptibility to malignant transformation and that loss of p53 can overcome the transformation resistance seen at later developmental stages. These results highlight the interplay between genetic alterations and the molecular changes that accompany specific developmental stages; early progenitors may lack the regulatory mechanisms present at later, more lineage-restrictive, developmental time points, making them more susceptible to transformation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
110
Issue :
35
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
90079343
Full Text :
https://doi.org/10.1073/pnas.1303504110