Back to Search
Start Over
Pre-synaptic kainate receptor-mediated facilitation of glutamate release involves PKA and Ca2+-calmodulin at thalamocortical synapses.
- Source :
-
Journal of Neurochemistry . Sep2013, Vol. 126 Issue 5, p565-578. 14p. 6 Graphs. - Publication Year :
- 2013
-
Abstract
- We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor ( KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca2+ permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca2+ entry through Ca2+-permeable KARs and liberation of intracellular Ca2+ stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca2+] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre-synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca2+-calmodulin dependent activation of an adenylyl cyclase/ cAMP/protein kinase A signalling cascade, independent of G-protein involvement. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00223042
- Volume :
- 126
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- Journal of Neurochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 89888188
- Full Text :
- https://doi.org/10.1111/jnc.12310