Back to Search Start Over

Oxidative Stress-Induced DNA Damage and Repair in Human Peripheral Blood Mononuclear Cells: Protective Role of Hemoglobin.

Authors :
Gafter-Gvili, Anat
Zingerman, Boris
Rozen-Zvi, Benaya
Ori, Yaacov
Green, Hefziba
Lubin, Ido
Malachi, Tsipora
Gafter, Uzi
Herman-Edelstein, Michal
Source :
PLoS ONE. Jul2013, Vol. 8 Issue 7, p1-7. 7p.
Publication Year :
2013

Abstract

Background: DNA repair is a cellular defence mechanism responding to DNA damage caused in large part by oxidative stress. There is a controversy with regard to the effect of red blood cells on DNA damage and cellular response. Aim: To investigate the effect of red blood cells on H2O2-induced DNA damage and repair in human peripheral blood mononuclear cells. Methods: DNA breaks were induced in peripheral blood mononuclear cells by H2O2 in the absence or presence of red blood cells, red blood cells hemolysate or hemoglobin. DNA repair was measured by 3H-thymidine uptake, % double-stranded DNA was measured by fluorometric assay of DNA unwinding. DNA damage was measured by the comet assay and by the detection of histone H2AX phosphorylation. Results: Red blood cells and red blood cells hemolysate reduced DNA repair in a dose-dependent manner. Red blood cells hemolysate reduced % double-stranded DNA, DNA damage and phosphorylation of histone H2AX. Hemoglobin had the same effect as red blood cells hemolysate on % double-stranded DNA. Conclusion: Red blood cells, via red blood cells hemolysate and hemoglobin, reduced the effect of oxidative stress on peripheral blood mononuclear cell DNA damage and phosphorylation of histone H2AX. Consequently, recruitment of DNA repair proteins diminished with reduction of DNA repair. This suggests that anemia predisposes to increased oxidative stress induced DNA damage, while a higher hemoglobin level provides protection against oxidative-stress-induced DNA damage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
7
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
89627296
Full Text :
https://doi.org/10.1371/journal.pone.0068341