Back to Search Start Over

Promoting effect of carbon dioxide on the dehydrogenation of ethylbenzene over silica-supported vanadium catalysts.

Authors :
Chen, Shuwei
Qin, Zhangfeng
Wang, Guofu
Dong, Mei
Wang, Jianguo
Source :
Fuel. Jul2013, Vol. 109, p43-48. 6p.
Publication Year :
2013

Abstract

Abstract: Dehydrogenation of ethylbenzene (EB) to styrene (ST) in the presence of carbon dioxide (CO2) was carried out over silica-supported vanadium catalysts (VO x /SiO2) to investigate the role of CO2 played in this reaction coupling process. A prominent promoting effect of CO2 on EB dehydrogenation is observed; over VO x /SiO2 with a vanadium loading of 0.8mmol/g-SiO2, ST yield at 550°C in CO2 is 2.05 times higher than that in an inert atmosphere of nitrogen and the catalyst also deactivates much more slowly in CO2. CO2 as a soft oxidant can effectively keep/regain high valence vanadium species that are highly active for EB dehydrogenation, which is then conducive to enhancing EB conversion and suppressing catalyst deactivation. Both carbonaceous deposition and deep reduction of the active vanadium species contribute to the catalyst deactivation; however, CO2 is only effective on alleviating the catalyst deactivation by protecting the high valance vanadium species from deep reduction, but is invalid in suppressing coke formation. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00162361
Volume :
109
Database :
Academic Search Index
Journal :
Fuel
Publication Type :
Academic Journal
Accession number :
89276430
Full Text :
https://doi.org/10.1016/j.fuel.2012.06.004