Back to Search Start Over

Performance characteristics and internal phenomena of polymer electrolyte membrane fuel cell with porous flow field.

Authors :
Tabe, Yutaka
Nasu, Takuya
Morioka, Satoshi
Chikahisa, Takemi
Source :
Journal of Power Sources. Sep2013, Vol. 238, p21-28. 8p.
Publication Year :
2013

Abstract

Abstract: Polymer electrolyte membrane fuel cells (PEFCs) with a porous flow field have been proposed as an alternative to cells with gas flow channels. In this study, the basic characteristics of a PEFC with a porous flow field are identified experimentally. It is shown that stable operation is maintained under conditions at high current density and low stoichiometric ratios of the cathode air, but that operation with low relative humidity gases is difficult in the porous type cell. To clarify the detailed causes of these characteristics, internal phenomena are investigated using a cell specially made for cross-section observations of the cathode porous flow field and temperature distribution measurements on the anode gas diffusion layer (GDL) surface. The direct observations show that the porous type cell is superior in draining the condensed water from the GDL surface, and that hydrophilic properties of the porous material are important for better cell performance at high current densities. The temperature measurements indicate that increases in temperature near the reaction area tend to be larger in the porous type cell than in the channel type cell due to the lower heat removal capability of the porous material, resulting in the unstable operation at relatively low humidities. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03787753
Volume :
238
Database :
Academic Search Index
Journal :
Journal of Power Sources
Publication Type :
Academic Journal
Accession number :
89275856
Full Text :
https://doi.org/10.1016/j.jpowsour.2013.03.047