Back to Search Start Over

Antimicrobial resistance of Enterococcus species from meat and fermented meat products isolated by a PCR-based rapid screening method.

Authors :
Jahan, Musarrat
Krause, Denis O.
Holley, Richard A.
Source :
International Journal of Food Microbiology. May2013, Vol. 163 Issue 2/3, p89-95. 7p.
Publication Year :
2013

Abstract

Abstract: Enterococci are predominantly found in the gastrointestinal tract of humans and animals, but species commonly resident on vegetation are known. Their presence in large numbers in foods may indicate a lapse in sanitation and their ability to serve as a genetic reservoir of transferable antibiotic resistance is of concern. Conventional culture methods for identification of enterococci are slow and sometimes give false results because of the biochemical diversity of the organisms in this genus. This work reports the development of a PCR-based assay to detect enterococci at the genus level by targeting a 16S rRNA sequence. Published 16S rRNA sequences were aligned and used to design genus specific primers (EntF and EntR). The primers were able to amplify a 678bp target region from Enterococcus faecalis ATCC 7080 and 20 other strains of enterococci from 11 different species, but there was no amplification by 32 species from closely related genera (Pediococcus, Lactobacillus, Streptococcus and Listeria) or species of Escherichia coli and Salmonella. The PCR positive samples were plated, screened by a colony patch technique and their identities were confirmed by API 20 Strep panels and sequencing. When dry fermented sausage and ham as well as fresh meat batter for dry cured sausage manufacture were tested for enterococci by the method, 29 Enterococcus strains (15 E. faecalis, 13 E. faecium, and one E. gallinarum) were identified. When susceptibility of these enterococci to 12 antibiotics was tested, the highest incidence of resistance was to clindamycin (89.6%), followed by tetracycline hydrochloride (65.5%), tylosin (62%), erythromycin (45%), streptomycin and neomycin (17%), chloramphenicol (10.3%), penicillin (10.3%), ciprofloxacin (10.3%) and gentamicin (3.4%). None was resistant to the clinically important drugs vancomycin or ampicillin. Most strains (27/29) were resistant to more than one antibiotic while 17 of 29 strains were resistant to three to 8 antibiotics. The molecular method developed was validated for speciation of enterococci and was useful in assessing uncooked processed meat products as a reservoir for multi-drug resistant Enterococcus species. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01681605
Volume :
163
Issue :
2/3
Database :
Academic Search Index
Journal :
International Journal of Food Microbiology
Publication Type :
Academic Journal
Accession number :
89071328
Full Text :
https://doi.org/10.1016/j.ijfoodmicro.2013.02.017