Back to Search
Start Over
DIAGONAL AND LOW-RANK MATRIX DECOMPOSITIONS, CORRELATION MATRICES, AND ELLIPSOID FITTING.
- Source :
-
SIAM Journal on Matrix Analysis & Applications . 2012, Vol. 33 Issue 4, p1395-1416. 22p. - Publication Year :
- 2012
-
Abstract
- In this paper we establish links between, and new results for, three problems that are not usually considered together. The first is a matrix decomposition problem that arises in areas such as statistical modeling and signal processing: given a matrix X formed as the sum of an unknown diagonal matrix and an unknown low-rank positive semidefinite matrix, decompose X into these constituents. The second problem we consider is to determine the facial structure of the set of correlation matrices, a convex set also known as the elliptope. This convex body, and particularly its facial structure, plays a role in applications from combinatorial optimization to mathematical finance. The third problem is a basic geometric question: given points v1, v2,..., vn ∈ Rk (where n > k) determine whether there is a centered ellipsoid passing exactly through all the points. We show that in a precise sense these three problems are equivalent. Furthermore we establish a simple sufficient condition on a subspace U that ensures any positive semidefinite matrix L with column space U can be recovered from D + L for any diagonal matrix D using a convex optimization-based heuristic known as minimum trace factor analysis. This result leads to a new understanding of the structure of rank-deficient correlation matrices and a simple condition on a set of points that ensures there is a centered ellipsoid passing through them. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 08954798
- Volume :
- 33
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- SIAM Journal on Matrix Analysis & Applications
- Publication Type :
- Academic Journal
- Accession number :
- 89040464
- Full Text :
- https://doi.org/10.1137/120872516