Back to Search Start Over

On predicting the popularity of newly emerging hashtags in Twitter.

Authors :
Ma, Zongyang
Sun, Aixin
Cong, Gao
Source :
Journal of the American Society for Information Science & Technology. Jul2013, Vol. 64 Issue 7, p1399-1410. 12p. 1 Diagram, 6 Charts, 2 Graphs.
Publication Year :
2013

Abstract

Because of Twitter's popularity and the viral nature of information dissemination on Twitter, predicting which Twitter topics will become popular in the near future becomes a task of considerable economic importance. Many Twitter topics are annotated by hashtags. In this article, we propose methods to predict the popularity of new hashtags on Twitter by formulating the problem as a classification task. We use five standard classification models (i.e., Naïve bayes, k-nearest neighbors, decision trees, support vector machines, and logistic regression) for prediction. The main challenge is the identification of effective features for describing new hashtags. We extract 7 content features from a hashtag string and the collection of tweets containing the hashtag and 11 contextual features from the social graph formed by users who have adopted the hashtag. We conducted experiments on a Twitter data set consisting of 31 million tweets from 2 million Singapore-based users. The experimental results show that the standard classifiers using the extracted features significantly outperform the baseline methods that do not use these features. Among the five classifiers, the logistic regression model performs the best in terms of the Micro- F1 measure. We also observe that contextual features are more effective than content features. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15322882
Volume :
64
Issue :
7
Database :
Academic Search Index
Journal :
Journal of the American Society for Information Science & Technology
Publication Type :
Academic Journal
Accession number :
87947638
Full Text :
https://doi.org/10.1002/asi.22844