Back to Search Start Over

Kinetic helicity needed to drive large-scale dynamos.

Authors :
Candelaresi, Simon
Brandenburg, Axel
Source :
Physical Review E: Statistical, Nonlinear & Soft Matter Physics. Apr2013, Vol. 87 Issue 4-B, p1-9. 9p.
Publication Year :
2013

Abstract

Magnetic field generation on scales that are large compared with the scale of the turbulent eddies is known to be possible via the so-called a effect when the turbulence is helical and if the domain is large enough for the a effect to dominate over turbulent diffusion. Using three-dimensional turbulence simulations, we show that the energy of the resulting mean magnetic field of the saturated state increases linearly with the product of normalized helicity and the ratio of domain scale to eddy scale, provided this product exceeds a critical value of around unity. This implies that large-scale dynamo action commences when the normalized helicity is larger than the inverse scale ratio. Our results show that the emergence of small-scale dynamo action does not have any noticeable effect on the large-scale dynamo. Recent findings by Pietarila Graham et al. [Phys. Rev. E 85, 066406 (2012)] of a smaller minimal helicity may be an artifact due to the onset of small-scale dynamo action at large magnetic Reynolds numbers. However, the onset of large-scale dynamo action is difficult to establish when the kinetic helicity is small. Instead of random forcing, they used an ABC flow with time-dependent phases. We show that such dynamos saturate prematurely in a way that is reminiscent of inhomogeneous dynamos with internal magnetic helicity fluxes. Furthermore, even for very low fractional helicities, such dynamos display large-scale fields that change direction, which is uncharacteristic of turbulent dynamos. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15393755
Volume :
87
Issue :
4-B
Database :
Academic Search Index
Journal :
Physical Review E: Statistical, Nonlinear & Soft Matter Physics
Publication Type :
Academic Journal
Accession number :
87715105
Full Text :
https://doi.org/10.1103/PhysRevE.87.043104