Back to Search Start Over

Isotope effects on the photodesorption processes of X2O (X = H,D) and HOD ice.

Authors :
Koning, J.
Kroes, G. J.
Arasa, C.
Source :
Journal of Chemical Physics. Mar2013, Vol. 138 Issue 10, p104701. 12p. 4 Charts, 11 Graphs.
Publication Year :
2013

Abstract

To investigate the isotope effects on the photodesorption processes of X2O (X = H,D) ice, molecular dynamics calculations have been performed on the ultraviolet photodissociation of an H2O or a D2O molecule in an H2O or a D2O amorphous ice surface, and on HOD photodissociation in an H2O amorphous ice surface, where the photodissociated molecules were located in the top four or five monolayers at ice temperatures of 10, 20, 30, 60, and 90 K. Three photodesorption processes can occur upon X2O photodissociation: X atom photodesorption, OX radical photodesorption, and X2O (or HOD) molecule photodesorption. X2O (or HOD) photodesorption can occur after recombination of X and OX, or after an energetic X atom photofragment kicks a surrounding X2O molecule from the ice surface. Isotope effects are observed for the X atom and the OX radical photodesorption as well as for the kick-out photodesorption. However, no isotope effects were noticeable for the photodesorption of recombined X2O molecules. The average D atom photodesorption probabilities are about a factor 0.9 smaller than those for the H atom, regardless of the isotope of the surrounding ice system. Also, the kick-out mechanism is more likely to occur if a D photofragment is created upon dissociation than if an H atom is created. These observations can be explained by more efficient energy transfer from the D atom to water molecules than from the H atom. Reasoning based on the X2O phonon frequencies associated with the librational modes and energy transfer efficiencies explain why the OX radical photodesorption probabilities are noticeably larger if the OX radical desorbs from a D2O ice system than from an H2O ice system. Also, the OX radical photodesorption is more probable upon dissociation of DOX (X = H,D) than upon dissociation of HOX (X = H,D), because the initial kinetic energy of the OX radical is larger if the dissociation products are D + OX than H + OX. The branching ratio of <FRACTION><NUM>OD</NUM><DEN>OH</DEN></FRACTION> desorption following photodissociation of an HOD molecule in ice (about 1.0) is much lower than the <FRACTION><NUM>OD</NUM><DEN>OH</DEN></FRACTION> branching ratio in gas-phase HOD photodissociation. This may lead to differences in isotope fractionation in OH(g) formation in dense and diffuse clouds in the interstellar medium. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
138
Issue :
10
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
86049770
Full Text :
https://doi.org/10.1063/1.4793733