Back to Search Start Over

Multidimensional master equation and its Monte-Carlo simulation.

Authors :
Pang, Juan
Bai, Zhan-Wu
Bao, Jing-Dong
Source :
Journal of Chemical Physics. Feb2013, Vol. 138 Issue 8, p084104. 5p. 5 Graphs.
Publication Year :
2013

Abstract

We derive an integral form of multidimensional master equation for a Markovian process, in which the transition function is obtained in terms of a set of discrete Langevin equations. The solution of master equation, namely, the probability density function is calculated by using the Monte-Carlo composite sampling method. In comparison with the usual Langevin-trajectory simulation, the present approach decreases effectively coarse-grained error. We apply the master equation to investigate time-dependent barrier escape rate of a particle from a two-dimensional metastable potential and show the advantage of this approach in the calculations of quantities that depend on the probability density function. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
138
Issue :
8
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
85807949
Full Text :
https://doi.org/10.1063/1.4792300