Back to Search Start Over

Visual Saliency Based on Scale-Space Analysis in the Frequency Domain.

Authors :
Li, Jian
Levine, Martin D.
An, Xiangjing
Xu, Xin
He, Hangen
Source :
IEEE Transactions on Pattern Analysis & Machine Intelligence. Apr2013, Vol. 35 Issue 4, p996-1010. 15p.
Publication Year :
2013

Abstract

We address the issue of visual saliency from three perspectives. First, we consider saliency detection as a frequency domain analysis problem. Second, we achieve this by employing the concept of nonsaliency. Third, we simultaneously consider the detection of salient regions of different size. The paper proposes a new bottom-up paradigm for detecting visual saliency, characterized by a scale-space analysis of the amplitude spectrum of natural images. We show that the convolution of the image amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale is equivalent to an image saliency detector. The saliency map is obtained by reconstructing the 2D signal using the original phase and the amplitude spectrum, filtered at a scale selected by minimizing saliency map entropy. A Hypercomplex Fourier Transform performs the analysis in the frequency domain. Using available databases, we demonstrate experimentally that the proposed model can predict human fixation data. We also introduce a new image database and use it to show that the saliency detector can highlight both small and large salient regions, as well as inhibit repeated distractors in cluttered images. In addition, we show that it is able to predict salient regions on which people focus their attention. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01628828
Volume :
35
Issue :
4
Database :
Academic Search Index
Journal :
IEEE Transactions on Pattern Analysis & Machine Intelligence
Publication Type :
Academic Journal
Accession number :
85705307
Full Text :
https://doi.org/10.1109/TPAMI.2012.147