Back to Search Start Over

Polynomial splines over locally refined box-partitions

Authors :
Dokken, Tor
Lyche, Tom
Pettersen, Kjell Fredrik
Source :
Computer Aided Geometric Design. Mar2013, Vol. 30 Issue 3, p331-356. 26p.
Publication Year :
2013

Abstract

Abstract: We address progressive local refinement of splines defined on axes parallel box-partitions and corresponding box-meshes in any space dimension. The refinement is specified by a sequence of mesh-rectangles (axes parallel hyperrectangles) in the mesh defining the spline spaces. In the 2-variate case a mesh-rectangle is a knotline segment. When starting from a tensor-mesh this refinement process builds what we denote an LR-mesh, a special instance of a box-mesh. On the LR-mesh we obtain a collection of hierarchically scaled B-splines, denoted LR B-splines, that forms a nonnegative partition of unity and spans the complete piecewise polynomial space on the mesh when the mesh construction follows certain simple rules. The dimensionality of the spline space can be determined using some recent dimension formulas. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01678396
Volume :
30
Issue :
3
Database :
Academic Search Index
Journal :
Computer Aided Geometric Design
Publication Type :
Academic Journal
Accession number :
85582691
Full Text :
https://doi.org/10.1016/j.cagd.2012.12.005