Back to Search
Start Over
Decomposition of the diagonal map
- Source :
-
Topology . Mar2003, Vol. 42 Issue 2, p349. 16p. - Publication Year :
- 2003
-
Abstract
- This paper presents a new method for using cup product information to draw conclusions about the Lusternik–Schnirelmann category of a space. The key idea is that of the Hopf set in <f>X</f> of a map <f>f : Sn−1→L</f>; if <f>K=L∪fDn⊆X</f>, then <f>catX(K)=catX(L)</f> if and only if <f>&ast;</f> is in the Hopf set in <f>X</f> of <f>f</f>. The main result explicitly constructs elements of the Hopf set in <f>X</f> of <f>f</f> in terms of members of the Hopf set in <f>X</f> of the attaching maps of lower dimensional cells. Applications include: a calculation of the category of <f>Sp(2)</f> without higher order cohomology operations; new, easily used upper bounds for Lusternik–Schnirelmann category that apply to any space; and new information about the category of the CW skeleta of loop spaces and free loop spaces on even-dimensional spheres. [Copyright &y& Elsevier]
- Subjects :
- *LUSTERNIK-Schnirelmann category
*MATHEMATICAL decomposition
Subjects
Details
- Language :
- English
- ISSN :
- 00409383
- Volume :
- 42
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Topology
- Publication Type :
- Academic Journal
- Accession number :
- 8544111
- Full Text :
- https://doi.org/10.1016/S0040-9383(01)00022-2