Back to Search Start Over

Acute antidepressant treatment differently modulates ERK/MAPK activation in neurons and astrocytes of the adult mouse prefrontal cortex

Authors :
Di Benedetto, B.
Radecke, J.
Schmidt, M.V.
Rupprecht, R.
Source :
Neuroscience. Mar2013, Vol. 232, p161-168. 8p.
Publication Year :
2013

Abstract

Abstract: The onset of action of antidepressants (ADs) usually takes several weeks, but first molecular responses to these drugs may appear already after acute administration. The Extracellular Signal-regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) signaling pathway is a target of ADs and an important pathway involved in cellular plasticity. In major depressive disorder (MDD), especially the prefrontal cortex (PFC) and hippocampus (Hip) are most likely affected in depressive patients and recent work revealed a hyperactivated ERK signaling in the rat PFC after chronic stress, a precipitating factor for MDD. Strong evidences support that not only neurons but also astrocytes participate in neuronal activity and may therefore additionally be a substrate of AD action. In this study, we show by Western blot that neither fluoxetine (FLX) nor desipramine (DMI) preferentially affects the activation of one of the two ERK isoforms, ERK1 and ERK2, with respect to the other. Further immunohistochemical analysis in the PFC revealed that basal levels of phospho-activated ERK (pERK) are mostly found in neurons in contrast to very few astrocytes. Both ADs can inhibit neuronal pERK as early as 15min after drug administration with peculiar regional and layer specificities. Contrarily, at this time point none of the two ADs shows a clear modulation of astrocytic pERK. We propose that this mechanism of action of ADs may be protective against an exacerbated cortical ERK activity that may exert detrimental effects on susceptible neuronal populations. Our findings on acute effects of AD treatment in the adult mouse PFC encourage to examine further how this treatment might influence pERK in animal models of depression to identify early targets of AD action. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03064522
Volume :
232
Database :
Academic Search Index
Journal :
Neuroscience
Publication Type :
Academic Journal
Accession number :
85420993
Full Text :
https://doi.org/10.1016/j.neuroscience.2012.11.061