Back to Search Start Over

Numerical modeling of the Linac4 negative ion source extraction region by 3D PIC-MCC code ONIX.

Authors :
Mochalskyy, S.
Lettry, J.
Minea, T.
Lifschitz, A. F.
Schmitzer, C.
Midttun, O.
Steyaert, D.
Source :
AIP Conference Proceedings. Feb2013, Vol. 1515 Issue 1, p31-40. 10p. 1 Diagram, 7 Graphs.
Publication Year :
2013

Abstract

At CERN, a high performance negative ion (NI) source is required for the 160 MeV H- linear accelerator Linac4. The source is planned to produce 80 mA of H- with an emittance of 0.25 mm mradN-RMS which is technically and scientifically very challenging. The optimization of the NI source requires a deep understanding of the underling physics concerning the production and extraction of the negative ions. The extraction mechanism from the negative ion source is complex involving a magnetic filter in order to cool down electrons' temperature. The ONIX (Orsay Negative Ion eXtraction) code is used to address this problem. The ONIX is a selfconsistent 3D electrostatic code using Particles-in-Cell Monte Carlo Collisions (PIC-MCC) approach. It was written to handle the complex boundary conditions between plasma, source walls, and beam formation at the extraction hole. Both, the positive extraction potential (25kV) and the magnetic field map are taken from the experimental set-up, in construction at CERN. This contribution focuses on the modeling of two different extractors (IS01, IS02) of the Linac4 ion sources. The most efficient extraction system is analyzed via numerical parametric studies. The influence of aperture's geometry and the strength of the magnetic filter field on the extracted electron and NI current will be discussed. The NI production of sources based on volume extraction and cesiated surface are also compared. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0094243X
Volume :
1515
Issue :
1
Database :
Academic Search Index
Journal :
AIP Conference Proceedings
Publication Type :
Conference
Accession number :
85406902
Full Text :
https://doi.org/10.1063/1.4792767