Back to Search Start Over

Evaluation of MODIS gross primary productivity for Africa using eddy covariance data

Authors :
Sjöström, M.
Zhao, M.
Archibald, S.
Arneth, A.
Cappelaere, B.
Falk, U.
de Grandcourt, A.
Hanan, N.
Kergoat, L.
Kutsch, W.
Merbold, L.
Mougin, E.
Nickless, A.
Nouvellon, Y.
Scholes, R.J.
Veenendaal, E.M.
Ardö, J.
Source :
Remote Sensing of Environment. Apr2013, Vol. 131, p275-286. 12p.
Publication Year :
2013

Abstract

Abstract: MOD17A2 provides operational gross primary production (GPP) data globally at 1km spatial resolution and 8-day temporal resolution. MOD17A2 estimates GPP according to the light use efficiency (LUE) concept assuming a fixed maximum rate of carbon assimilation per unit photosynthetically active radiation absorbed by the vegetation (εmax). Minimum temperature and vapor pressure deficit derived from meteorological data down-regulate εmax and constrain carbon assimilation. This data is useful for regional to global studies of the terrestrial carbon budget, climate change and natural resources. In this study we evaluated the MOD17A2 product and its driver data by using in situ measurements of meteorology and eddy covariance GPP for 12 African sites. MOD17A2 agreed well with eddy covariance GPP for wet sites. Overall, seasonality was well captured but MOD17A2 GPP was underestimated for the dry sites located in the Sahel region. Replacing the meteorological driver data derived from coarse resolution reanalysis data with tower measurements reduced MOD17A2 GPP uncertainties, however, the underestimations at the dry sites persisted. Inferred εmax calculated from tower data was higher than the εmax prescribed in MOD17A2. This, in addition to uncertainties in fraction of absorbed photosynthetically active radiation (FAPAR) explains some of the underestimations. The results suggest that improved quality of driver data, but primarily a readjustment of the parameters in the biome parameter look-up table (BPLUT) may be needed to better estimate GPP for African ecosystems in MOD17A2. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00344257
Volume :
131
Database :
Academic Search Index
Journal :
Remote Sensing of Environment
Publication Type :
Academic Journal
Accession number :
85281541
Full Text :
https://doi.org/10.1016/j.rse.2012.12.023